
There are multiple ways to denote sequences, one of which involves simply listing the sequence in cases where the pattern of the sequence is easily discernible.

GEOMETRIC AND ARITHMETIC SEQUENCES SERIES
They are particularly useful as a basis for series (essentially describe an operation of adding infinite quantities to a starting quantity), which are generally used in differential equations and the area of mathematics referred to as analysis. Sequences are used to study functions, spaces, and other mathematical structures. A series is convergent if the sequence converges to some limit, while a sequence that does not converge is divergent. Sequences have many applications in various mathematical disciplines due to their properties of convergence. There are many different types of number sequences, three of the most common of which include arithmetic sequences, geometric sequences, and Fibonacci sequences. In a number sequence, the order of the sequence is important, and depending on the sequence, it is possible for the same terms to appear multiple times. The individual elements in a sequence is often referred to as term, and the number of terms in a sequence is called its length, which can be infinite. Accordingly, a number sequence is an ordered list of numbers that follow a particular pattern.

In mathematics, a sequence is an ordered list of objects.
